

APPLICATION

Submersible electric pump unit of ECV type for wells are intended for the rise of water of general mineral content (dry constituent) not more than 1500 mg/l, pH 6,5-9,5, the temperature 25°C, with a mass share of hard mechanical admixtures not more than 350 mg/l, of sulphate - not more than 500 mg/l, hydrogen sulphide - not more than 1,5 mg/l.

- Version1. Pump with the working wheels fixed on the shaft. Axial hydraulic stress is taken in by the supporting device, located in the electric motor. The casing of blade taps are formed.
- Version2. The casing of blade taps are cylindrical, made of pipes with disks, which fix the taps in the axial direction, separate the inter-stage chambers and form slotted sealing of the working wheels.
- Version3. Pumps with cast (trap) blade taps. The stages of the pumps are of a semi-axle type. The working wheels are fixed on the shaft. Version4. Mono-block electric pump units (the working wheel is located on the shaft of the electric motor).
- Version H, G, Tr and their combinations can be applied in tougher working conditions, determined in the every concrete case in the specifications for a concrete unit.

They are used for the rise of pure water for urban, industrial and agricultural water supply from artesian wells.

DESCRIPTION

The unit consists of the centrifugal pump and deep-well of the electric motor. The shaft pumps and engine are connected to the muft of a rigid type.

The axial forces arising at work of the pump, are perceived in unit electric motor. The valve, located in the top part of the pump, serves for deduction of a pole of a liquid in pipes at stops of the pump and provides smooth start at repeated start-up.

Deep-well the electric motor three-phase asynchronous with squirrel-cage rotor. The internal cavity before work is filled distilled or clear drinking water. The inclusion of the engine not filled with water will result in an out of operation.

The winding of the engine is executed by a waterproof wire, the places of connection are isolated by a waterproof sticky tape. The rotor of the engine rotates in rubber-metal bearings and bases on unit electric motor, which is executed from rubber or grafitftoroplast. The filter in the top part of the engine serves for protection against hit of sand in an internal cavity, and also for indemnification of thermal expansion of water filling the engine.

To find out technical characteristics of the model you need, just click on the mark of the pump

The mark of the pump	Flow, m³h	Head, m	The mark of the pump	Flow, m³h	Head, m
ECV4-10-115	10	115	ECV5-4-125	4	125
ECV5-6,3-80	6,3	80	ECV6-4-130	4	130
ECV6-4-190	4	190	ECV6-6,3-85	6,3	85
ECV6-6,3-125	6,3	125	ECV6-10-80	10	80
ECV6-10-110	10	110	ECV6-10-140	10	140
ECV6-10-185	10	185	ECV6-10-235	10	235
ECV6-16-75	16	75	ECV6-16-110	16	110
ECV6-16-140	16	140	ECV8-25-100	25	100
ECV8-25-150	25	150	ECV8-25-300	25	300
ECV8-40-60	40	60	ECV8-40-90	40	90
ECV8-40-120	40	120	ECV8-40-180	40	180
ECV10-63-65	63	65	ECV10-63-110	63	110
ECV10-63-150	63	150	ECV10-63-270	63	270
ECV10-120-60	120	60	ECV10-160-35	160	35
ECV12-160-65	160	65	ECV12-160-100	160	100
ECV12-160-140	160	140	ECV12-210-25	210	25
ECV12-255-30	255	30			

Version 1. Pumps with the working wheels fixed on the shaft. Axial hydraulic stress is taken in by the supporting device, located in the electric motor. The casings of blade taps are formed.

Version 2. The casings of blade taps are cylindrical, made of pipes with disks, which fix the taps in the axial direction, separate the inter-stage chambers and form slotted sealing of the working wheels.

Version 3. Pumps with cast (trap) blade taps. The stages of the pumps are of a semi-axle type. The working wheels are fixed on the shaft.

Version 4. Mono-block electric pump units (the working wheel is located on the shaft of the electric motor).

They are used for the rise of pure water for urban, industrial and agricultural water supply from artesian wells.

Flow, m ³ /h	10
Head, m	115
Frequency, Hz	50
Frequency, rpm	3000
Power, kWt	5,5
Height of self-suction, m	-

Length, mm	Diametr max, mm	Weight, kG
2630	100	41

Version 1. Pumps with the working wheels fixed on the shaft. Axial hydraulic stress is taken in by the supporting device, located in the electric motor. The casings of blade taps are formed.

Version 2. The casings of blade taps are cylindrical, made of pipes with disks, which fix the taps in the axial direction, separate the inter-stage chambers and form slotted sealing of the working wheels.

Version 3. Pumps with cast (trap) blade taps. The stages of the pumps are of a semi-axle type. The working wheels are fixed on the shaft.

Version 4. Mono-block electric pump units (the working wheel is located on the shaft of the electric motor).

They are used for the rise of pure water for urban, industrial and agricultural water supply from artesian wells.

Flow, m3/h	6,3
Head, m	80
Frequency, Hz	50
Frequency, rpm	3000
Power, kWt	2,8
Height of self-suction, m	_

Length, mm	Diametr max, mm	Weight, kG
1650	125	59

Version 1. Pumps with the working wheels fixed on the shaft. Axial hydraulic stress is taken in by the supporting device, located in the electric motor. The casings of blade taps are formed.

Version 2. The casings of blade taps are cylindrical, made of pipes with disks, which fix the taps in the axial direction, separate the inter-stage chambers and form slotted sealing of the working wheels.

Version 3. Pumps with cast (trap) blade taps. The stages of the pumps are of a semi-axle type. The working wheels are fixed on the shaft.

Version 4. Mono-block electric pump units (the working wheel is located on the shaft of the electric motor).

They are used for the rise of pure water for urban, industrial and agricultural water supply from artesian wells.

Flow, m ³ /h	4
Head, m	190
Frequency, Hz	50
Frequency, rpm	3000
Power, kWt	4,5
Height of self-suction, m	_

Length, mm	Diametr max, mm	Weight, kG
2000	145	95

Version 1. Pumps with the working wheels fixed on the shaft. Axial hydraulic stress is taken in by the supporting device, located in the electric motor. The casings of blade taps are formed.

Version 2. The casings of blade taps are cylindrical, made of pipes with disks, which fix the taps in the axial direction, separate the inter-stage chambers and form slotted sealing of the working wheels.

Version 3. Pumps with cast (trap) blade taps. The stages of the pumps are of a semi-axle type. The working wheels are fixed on the shaft.

Version 4. Mono-block electric pump units (the working wheel is located on the shaft of the electric motor).

They are used for the rise of pure water for urban, industrial and agricultural water supply from artesian wells.

Flow, m ³ /h	6,3
Head, m	125
Frequency, Hz	50
Frequency, rpm	3000
Power, kWt	4,5
Height of self-suction, m	_

Length, mm	Diametr max, mm	Weight, kG
1910	145	73

Version 1. Pumps with the working wheels fixed on the shaft. Axial hydraulic stress is taken in by the supporting device, located in the electric motor. The casings of blade taps are formed.

Version 2. The casings of blade taps are cylindrical, made of pipes with disks, which fix the taps in the axial direction, separate the inter-stage chambers and form slotted sealing of the working wheels.

Version 3. Pumps with cast (trap) blade taps. The stages of the pumps are of a semi-axle type. The working wheels are fixed on the shaft.

Version 4. Mono-block electric pump units (the working wheel is located on the shaft of the electric motor).

They are used for the rise of pure water for urban, industrial and agricultural water supply from artesian wells.

Flow, m ³ /h	10
Head, m	110
Frequency, Hz	50
Frequency, rpm	3000
Power, kWt	5,5
Height of self-suction, m	_

Length, mm	Diametr max, mm	Weight, kG
1700	145	85

Version 1. Pumps with the working wheels fixed on the shaft. Axial hydraulic stress is taken in by the supporting device, located in the electric motor. The casings of blade taps are formed.

Version 2. The casings of blade taps are cylindrical, made of pipes with disks, which fix the taps in the axial direction, separate the inter-stage chambers and form slotted sealing of the working wheels.

Version 3. Pumps with cast (trap) blade taps. The stages of the pumps are of a semi-axle type. The working wheels are fixed on the shaft.

Version 4. Mono-block electric pump units (the working wheel is located on the shaft of the electric motor).

They are used for the rise of pure water for urban, industrial and agricultural water supply from artesian wells.

Flow, m ³ /h	10
Head, m	185
Frequency, Hz	50
Frequency, rpm	3000
Power, kWt	8
Height of self-suction, m	_

Length, mm	Diametr max, mm	Weight, kG
2280	145	110

Version 1. Pumps with the working wheels fixed on the shaft. Axial hydraulic stress is taken in by the supporting device, located in the electric motor. The casings of blade taps are formed.

Version 2. The casings of blade taps are cylindrical, made of pipes with disks, which fix the taps in the axial direction, separate the inter-stage chambers and form slotted sealing of the working wheels.

Version 3. Pumps with cast (trap) blade taps. The stages of the pumps are of a semi-axle type. The working wheels are fixed on the shaft.

Version 4. Mono-block electric pump units (the working wheel is located on the shaft of the electric motor).

They are used for the rise of pure water for urban, industrial and agricultural water supply from artesian wells.

Flow, m ³ /h	16
Head, m	75
Frequency, Hz	50
Frequency, rpm	3000
Power, kWt	5,5
Height of self-suction, m	_

Length, mm	Diametr max, mm	Weight, kG
1700	145	86

Version 1. Pumps with the working wheels fixed on the shaft. Axial hydraulic stress is taken in by the supporting device, located in the electric motor. The casings of blade taps are formed.

Version 2. The casings of blade taps are cylindrical, made of pipes with disks, which fix the taps in the axial direction, separate the inter-stage chambers and form slotted sealing of the working wheels.

Version 3. Pumps with cast (trap) blade taps. The stages of the pumps are of a semi-axle type. The working wheels are fixed on the shaft.

Version 4. Mono-block electric pump units (the working wheel is located on the shaft of the electric motor).

They are used for the rise of pure water for urban, industrial and agricultural water supply from artesian wells.

Flow, m ³ /h	16
Head, m	140
Frequency, Hz	50
Frequency, rpm	3000
Power, kWt	11
Height of self-suction, m	_

Length, mm	Diametr max, mm	Weight, kG
1765	145	146

Version 1. Pumps with the working wheels fixed on the shaft. Axial hydraulic stress is taken in by the supporting device, located in the electric motor. The casings of blade taps are formed.

Version 2. The casings of blade taps are cylindrical, made of pipes with disks, which fix the taps in the axial direction, separate the inter-stage chambers and form slotted sealing of the working wheels.

Version 3. Pumps with cast (trap) blade taps. The stages of the pumps are of a semi-axle type. The working wheels are fixed on the shaft.

Version 4. Mono-block electric pump units (the working wheel is located on the shaft of the electric motor).

They are used for the rise of pure water for urban, industrial and agricultural water supply from artesian wells.

Flow, m ³ /h	25
Head, m	150
Frequency, Hz	50
Frequency, rpm	3000
Power, kWt	16
Height of self-suction, m	_

Length, mm	Diametr max, mm	Weight, kG
2128	186	160

Version 1. Pumps with the working wheels fixed on the shaft. Axial hydraulic stress is taken in by the supporting device, located in the electric motor. The casings of blade taps are formed.

Version 2. The casings of blade taps are cylindrical, made of pipes with disks, which fix the taps in the axial direction, separate the inter-stage chambers and form slotted sealing of the working wheels.

Version 3. Pumps with cast (trap) blade taps. The stages of the pumps are of a semi-axle type. The working wheels are fixed on the shaft.

Version 4. Mono-block electric pump units (the working wheel is located on the shaft of the electric motor).

They are used for the rise of pure water for urban, industrial and agricultural water supply from artesian wells.

Flow, m3/h	40
Head, m	60
Frequency, Hz	50
Frequency, rpm	3000
Power, kWt	11
Height of self-suction, m	_

Length, mm	Diametr max, mm	Weight, kG
163	186	145

Version 1. Pumps with the working wheels fixed on the shaft. Axial hydraulic stress is taken in by the supporting device, located in the electric motor. The casings of blade taps are formed.

Version 2. The casings of blade taps are cylindrical, made of pipes with disks, which fix the taps in the axial direction, separate the inter-stage chambers and form slotted sealing of the working wheels.

Version 3. Pumps with cast (trap) blade taps. The stages of the pumps are of a semi-axle type. The working wheels are fixed on the shaft.

Version 4. Mono-block electric pump units (the working wheel is located on the shaft of the electric motor).

They are used for the rise of pure water for urban, industrial and agricultural water supply from artesian wells.

Flow, m3/h	40
Head, m	120
Frequency, Hz	50
Frequency, rpm	3000
Power, kWt	22
Height of self-suction, m	_

Length, mm	Diametr max, mm	Weight, kG
163	186	145

Version 1. Pumps with the working wheels fixed on the shaft. Axial hydraulic stress is taken in by the supporting device, located in the electric motor. The casings of blade taps are formed.

Version 2. The casings of blade taps are cylindrical, made of pipes with disks, which fix the taps in the axial direction, separate the inter-stage chambers and form slotted sealing of the working wheels.

Version 3. Pumps with cast (trap) blade taps. The stages of the pumps are of a semi-axle type. The working wheels are fixed on the shaft.

Version 4. Mono-block electric pump units (the working wheel is located on the shaft of the electric motor).

They are used for the rise of pure water for urban, industrial and agricultural water supply from artesian wells.

Flow, m3/h	63
Head, m	65
Frequency, Hz	50
Frequency, rpm	3000
Power, kWt	22
Height of self-suction, m	_

Length, mm	Diametr max, mm	Weight, kG
1618	235	200

Version 1. Pumps with the working wheels fixed on the shaft. Axial hydraulic stress is taken in by the supporting device, located in the electric motor. The casings of blade taps are formed.

Version 2. The casings of blade taps are cylindrical, made of pipes with disks, which fix the taps in the axial direction, separate the inter-stage chambers and form slotted sealing of the working wheels.

Version 3. Pumps with cast (trap) blade taps. The stages of the pumps are of a semi-axle type. The working wheels are fixed on the shaft.

Version 4. Mono-block electric pump units (the working wheel is located on the shaft of the electric motor).

They are used for the rise of pure water for urban, industrial and agricultural water supply from artesian wells.

Flow, m3/h	63
Head, m	150
Frequency, Hz	50
Frequency, rpm	3000
Power, kWt	45
Height of self-suction. m	_

Length, mm	Diametr max, mm	Weight, kG
2281	235	295

Version 1. Pumps with the working wheels fixed on the shaft. Axial hydraulic stress is taken in by the supporting device, located in the electric motor. The casings of blade taps are formed.

Version 2. The casings of blade taps are cylindrical, made of pipes with disks, which fix the taps in the axial direction, separate the inter-stage chambers and form slotted sealing of the working wheels.

Version 3. Pumps with cast (trap) blade taps. The stages of the pumps are of a semi-axle type. The working wheels are fixed on the shaft.

Version 4. Mono-block electric pump units (the working wheel is located on the shaft of the electric motor).

They are used for the rise of pure water for urban, industrial and agricultural water supply from artesian wells.

Flow, m3/h	120
Head, m	60
Frequency, Hz	50
Frequency, rpm	3000
Power, kWt	32
Height of self-suction, m	_

Length, mm	Diametr max, mm	Weight, kG
2030	235	270

Version 1. Pumps with the working wheels fixed on the shaft. Axial hydraulic stress is taken in by the supporting device, located in the electric motor. The casings of blade taps are formed.

Version 2. The casings of blade taps are cylindrical, made of pipes with disks, which fix the taps in the axial direction, separate the inter-stage chambers and form slotted sealing of the working wheels.

Version 3. Pumps with cast (trap) blade taps. The stages of the pumps are of a semi-axle type. The working wheels are fixed on the shaft.

Version 4. Mono-block electric pump units (the working wheel is located on the shaft of the electric motor).

They are used for the rise of pure water for urban, industrial and agricultural water supply from artesian wells.

Flow, m3/h	160
Head, m	65
Frequency, Hz	50
Frequency, rpm	3000
Power, kWt	45
Height of self-suction, m	_

Length, mm	Diametr max, mm	Weight, kG
2000	281	360

Version 1. Pumps with the working wheels fixed on the shaft. Axial hydraulic stress is taken in by the supporting device, located in the electric motor. The casings of blade taps are formed.

Version 2. The casings of blade taps are cylindrical, made of pipes with disks, which fix the taps in the axial direction, separate the inter-stage chambers and form slotted sealing of the working wheels.

Version 3. Pumps with cast (trap) blade taps. The stages of the pumps are of a semi-axle type. The working wheels are fixed on the shaft.

Version 4. Mono-block electric pump units (the working wheel is located on the shaft of the electric motor).

They are used for the rise of pure water for urban, industrial and agricultural water supply from artesian wells.

Flow, m3/h	160
Head, m	140
Frequency, Hz	50
Frequency, rpm	3000
Power, kWt	90
Height of self-suction, m	_

Length, mm	Diametr max, mm	Weight, kG
2618	281	610

Version 1. Pumps with the working wheels fixed on the shaft. Axial hydraulic stress is taken in by the supporting device, located in the electric motor. The casings of blade taps are formed.

Version 2. The casings of blade taps are cylindrical, made of pipes with disks, which fix the taps in the axial direction, separate the inter-stage chambers and form slotted sealing of the working wheels.

Version 3. Pumps with cast (trap) blade taps. The stages of the pumps are of a semi-axle type. The working wheels are fixed on the shaft.

Version 4. Mono-block electric pump units (the working wheel is located on the shaft of the electric motor).

They are used for the rise of pure water for urban, industrial and agricultural water supply from artesian wells.

Flow, m3/h	255
Head, m	30
Frequency, Hz	50
Frequency, rpm	3000
Power, kWt	32
Height of self-suction, m	-

Length, mm	Diametr max, mm	Weight, kG
1490	281	254

Version 1. Pumps with the working wheels fixed on the shaft. Axial hydraulic stress is taken in by the supporting device, located in the electric motor. The casings of blade taps are formed.

Version 2. The casings of blade taps are cylindrical, made of pipes with disks, which fix the taps in the axial direction, separate the inter-stage chambers and form slotted sealing of the working wheels.

Version 3. Pumps with cast (trap) blade taps. The stages of the pumps are of a semi-axle type. The working wheels are fixed on the shaft.

Version 4. Mono-block electric pump units (the working wheel is located on the shaft of the electric motor).

They are used for the rise of pure water for urban, industrial and agricultural water supply from artesian wells.

How, m3/h	4
Head, m	125
Frequency, Hz	50
Frequency, rpm	3000
Power, kWt	2,8
Height of self-suction, m	-

Length, mm	Diametr max, mm	Weight, kG
1812	125	63

Version 1. Pumps with the working wheels fixed on the shaft. Axial hydraulic stress is taken in by the supporting device, located in the electric motor. The casings of blade taps are formed.

Version 2. The casings of blade taps are cylindrical, made of pipes with disks, which fix the taps in the axial direction, separate the inter-stage chambers and form slotted sealing of the working wheels.

Version 3. Pumps with cast (trap) blade taps. The stages of the pumps are of a semi-axle type. The working wheels are fixed on the shaft.]

Version 4. Mono-block electric pump units (the working wheel is located on the shaft of the electric motor).

They are used for the rise of pure water for urban, industrial and agricultural water supply from artesian wells.

Flow, m3/h	4
Head, m	130
Frequency, Hz	50
Frequency, rpm	3000
Power, kWt	2,8
Height of self-suction, m	_

Length, mm	Diametr max, mm	Weight, kG
1650	145	78

Version 1. Pumps with the working wheels fixed on the shaft. Axial hydraulic stress is taken in by the supporting device, located in the electric motor. The casings of blade taps are formed.

Version 2. The casings of blade taps are cylindrical, made of pipes with disks, which fix the taps in the axial direction, separate the inter-stage chambers and form slotted sealing of the working wheels.

Version 3. Pumps with cast (trap) blade taps. The stages of the pumps are of a semi-axle type. The working wheels are fixed on the shaft.

Version 4. Mono-block electric pump units (the working wheel is located on the shaft of the electric motor).

They are used for the rise of pure water for urban, industrial and agricultural water supply from artesian wells.

Flow, m3/h	6,3
Head, m	85
Frequency, Hz	50
Frequency, rpm	3000
Power, kWt	2,8
Height of self-suction, m	_

Length, mm	Diametr max, mm	Weight, kG
1540	145	72

Version 1. Pumps with the working wheels fixed on the shaft. Axial hydraulic stress is taken in by the supporting device, located in the electric motor. The casings of blade taps are formed.

Version 2. The casings of blade taps are cylindrical, made of pipes with disks, which fix the taps in the axial direction, separate the inter-stage chambers and form slotted sealing of the working wheels.

Version 3. Pumps with cast (trap) blade taps. The stages of the pumps are of a semi-axle type. The working wheels are fixed on the shaft.

Version 4. Mono-block electric pump units (the working wheel is located on the shaft of the electric motor).

They are used for the rise of pure water for urban, industrial and agricultural water supply from artesian wells.

Flow, m3/h	10
Head, m	80
Frequency, Hz	50
Frequency, rpm	3000
Power, kWt	4,5
Height of self-suction, m	-

Length, mm	Diametr max, mm	Weight, kG
1560	145	68

Version 1. Pumps with the working wheels fixed on the shaft. Axial hydraulic stress is taken in by the supporting device, located in the electric motor. The casings of blade taps are formed.

Version 2. The casings of blade taps are cylindrical, made of pipes with disks, which fix the taps in the axial direction, separate the inter-stage chambers and form slotted sealing of the working wheels.

Version 3. Pumps with cast (trap) blade taps. The stages of the pumps are of a semi-axle type. The working wheels are fixed on the shaft.

Version 4. Mono-block electric pump units (the working wheel is located on the shaft of the electric motor).

They are used for the rise of pure water for urban, industrial and agricultural water supply from artesian wells.

Flow, m3/h	10
Head, m	140
Frequency, Hz	50
Frequency, rpm	3000
Power, kWt	8
Height of self-suction, m	<u>-</u>

Length, mm	Diametr max, mm	Weight, kG
1900	145	100

Version 1. Pumps with the working wheels fixed on the shaft. Axial hydraulic stress is taken in by the supporting device, located in the electric motor. The casings of blade taps are formed.

Version 2. The casings of blade taps are cylindrical, made of pipes with disks, which fix the taps in the axial direction, separate the inter-stage chambers and form slotted sealing of the working wheels.

Version 3. Pumps with cast (trap) blade taps. The stages of the pumps are of a semi-axle type. The working wheels are fixed on the shaft.

Version 4. Mono-block electric pump units (the working wheel is located on the shaft of the electric motor).

They are used for the rise of pure water for urban, industrial and agricultural water supply from artesian wells.

Flow, m3/h	10
Head, m	235
Frequency, Hz	50
Frequency, rpm	3000
Power, kWt	11
Height of self-suction, m	_

Length, mm	Diametr max, mm	Weight, kG
2684	145	145

Version 1. Pumps with the working wheels fixed on the shaft. Axial hydraulic stress is taken in by the supporting device, located in the electric motor. The casings of blade taps are formed.

Version 2. The casings of blade taps are cylindrical, made of pipes with disks, which fix the taps in the axial direction, separate the inter-stage chambers and form slotted sealing of the working wheels.

Version 3. Pumps with cast (trap) blade taps. The stages of the pumps are of a semi-axle type. The working wheels are fixed on the shaft.

Version 4. Mono-block electric pump units (the working wheel is located on the shaft of the electric motor).

They are used for the rise of pure water for urban, industrial and agricultural water supply from artesian wells.

Flow, m3/h	16
Head, m	110
Frequency, Hz	50
Frequency, rpm	3000
Power, kWt	8
Height of self-suction, m	_

Length, mm	Diametr max, mm	Weight, kG
1860	145	190

Version 1. Pumps with the working wheels fixed on the shaft. Axial hydraulic stress is taken in by the supporting device, located in the electric motor. The casings of blade taps are formed.

Version 2. The casings of blade taps are cylindrical, made of pipes with disks, which fix the taps in the axial direction, separate the inter-stage chambers and form slotted sealing of the working wheels.

Version 3. Pumps with cast (trap) blade taps. The stages of the pumps are of a semi-axle type. The working wheels are fixed on the shaft.

Version 4. Mono-block electric pump units (the working wheel is located on the shaft of the electric motor).

They are used for the rise of pure water for urban, industrial and agricultural water supply from artesian wells.

Flow, m3/h	25
Head, m	100
Frequency, Hz	50
Frequency, rpm	3000
Power, kWt	11
Height of self-suction, m	_

Length, mm	Diametr max, mm	Weight, kG
1832	186	140

Version 1. Pumps with the working wheels fixed on the shaft. Axial hydraulic stress is taken in by the supporting device, located in the electric motor. The casings of blade taps are formed.

Version 2. The casings of blade taps are cylindrical, made of pipes with disks, which fix the taps in the axial direction, separate the inter-stage chambers and form slotted sealing of the working wheels.

Version 3. Pumps with cast (trap) blade taps. The stages of the pumps are of a semi-axle type. The working wheels are fixed on the shaft.

Version 4. Mono-block electric pump units (the working wheel is located on the shaft of the electric motor).

They are used for the rise of pure water for urban, industrial and agricultural water supply from artesian wells.

Flow, m3/h	25
Head, m	300
Frequency, Hz	50
Frequency, rpm	3000
Power, kWt	32
Height of self-suction, m	_

Length, mm	Diametr max, mm	Weight, kG
3955	186	355

Version 1. Pumps with the working wheels fixed on the shaft. Axial hydraulic stress is taken in by the supporting device, located in the electric motor. The casings of blade taps are formed.

Version 2. The casings of blade taps are cylindrical, made of pipes with disks, which fix the taps in the axial direction, separate the inter-stage chambers and form slotted sealing of the working wheels.

Version 3. Pumps with cast (trap) blade taps. The stages of the pumps are of a semi-axle type. The working wheels are fixed on the shaft.

Version 4. Mono-block electric pump units (the working wheel is located on the shaft of the electric motor).

They are used for the rise of pure water for urban, industrial and agricultural water supply from artesian wells.

Flow, m3/h	40
Head, m	90
Frequency, Hz	50
Frequency, rpm	3000
Power, kWt	16
Height of self-suction, m	<u>-</u>

Length, mm	Diametr max, mm	Weight, kG
1961	186	190

Version 1. Pumps with the working wheels fixed on the shaft. Axial hydraulic stress is taken in by the supporting device, located in the electric motor. The casings of blade taps are formed.

Version 2. The casings of blade taps are cylindrical, made of pipes with disks, which fix the taps in the axial direction, separate the inter-stage chambers and form slotted sealing of the working wheels.

Version 3. Pumps with cast (trap) blade taps. The stages of the pumps are of a semi-axle type. The working wheels are fixed on the shaft.

Version 4. Mono-block electric pump units (the working wheel is located on the shaft of the electric motor).

They are used for the rise of pure water for urban, industrial and agricultural water supply from artesian wells.

Flow, m3/h	40
Head, m	180
Frequency, Hz	50
Frequency, rpm	3000
Power, kWt	32
Height of self-suction. m	_

Length, mm	Diametr max, mm	Weight, kG
3105	186	308

Version 1. Pumps with the working wheels fixed on the shaft. Axial hydraulic stress is taken in by the supporting device, located in the electric motor. The casings of blade taps are formed.

Version 2. The casings of blade taps are cylindrical, made of pipes with disks, which fix the taps in the axial direction, separate the inter-stage chambers and form slotted sealing of the working wheels.

Version 3. Pumps with cast (trap) blade taps. The stages of the pumps are of a semi-axle type. The working wheels are fixed on the shaft.

Version 4. Mono-block electric pump units (the working wheel is located on the shaft of the electric motor).

They are used for the rise of pure water for urban, industrial and agricultural water supply from artesian wells.

Flow, m3/h	63
Head, m	110
Frequency, Hz	50
Frequency, rpm	3000
Power, kWt	32
Height of self-suction, m	_

Length, mm	Diametr max, mm	Weight, kG
1971	235	245

Version 1. Pumps with the working wheels fixed on the shaft. Axial hydraulic stress is taken in by the supporting device, located in the electric motor. The casings of blade taps are formed.

Version 2. The casings of blade taps are cylindrical, made of pipes with disks, which fix the taps in the axial direction, separate the inter-stage chambers and form slotted sealing of the working wheels.

Version 3. Pumps with cast (trap) blade taps. The stages of the pumps are of a semi-axle type. The working wheels are fixed on the shaft.

Version 4. Mono-block electric pump units (the working wheel is located on the shaft of the electric motor).

They are used for the rise of pure water for urban, industrial and agricultural water supply from artesian wells.

Flow, m3/h	63
Head, m	270
Frequency, Hz	50
Frequency, rpm	3000
Power, kWt	65
Height of self-suction, m	_

Length, mm	Diametr max, mm	Weight, kG
3235	235	450

Version 1. Pumps with the working wheels fixed on the shaft. Axial hydraulic stress is taken in by the supporting device, located in the electric motor. The casings of blade taps are formed.

Version 2. The casings of blade taps are cylindrical, made of pipes with disks, which fix the taps in the axial direction, separate the inter-stage chambers and form slotted sealing of the working wheels.

Version 3. Pumps with cast (trap) blade taps. The stages of the pumps are of a semi-axle type. The working wheels are fixed on the shaft.

Version 4. Mono-block electric pump units (the working wheel is located on the shaft of the electric motor).

They are used for the rise of pure water for urban, industrial and agricultural water supply from artesian wells.

Flow, m3/h	160
Head, m	35
Frequency, Hz	50
Frequency, rpm	3000
Power, kWt	22
Height of self-suction, m	_

Length, mm	Diametr max, mm	Weight, kG
1764	235	249

Version 1. Pumps with the working wheels fixed on the shaft. Axial hydraulic stress is taken in by the supporting device, located in the electric motor. The casings of blade taps are formed.

Version 2. The casings of blade taps are cylindrical, made of pipes with disks, which fix the taps in the axial direction, separate the inter-stage chambers and form slotted sealing of the working wheels.

Version 3. Pumps with cast (trap) blade taps. The stages of the pumps are of a semi-axle type. The working wheels are fixed on the shaft.

Version 4. Mono-block electric pump units (the working wheel is located on the shaft of the electric motor).

They are used for the rise of pure water for urban, industrial and agricultural water supply from artesian wells.

How, m3/h	160
Head, m	100
Frequency, Hz	50
Frequency, rpm	3000
Power, kWt	65
Height of self-suction, m	_

Length, mm	Diametr max, mm	Weight, kG
2157	281	415

Version 1. Pumps with the working wheels fixed on the shaft. Axial hydraulic stress is taken in by the supporting device, located in the electric motor. The casings of blade taps are formed.

Version 2. The casings of blade taps are cylindrical, made of pipes with disks, which fix the taps in the axial direction, separate the inter-stage chambers and form slotted sealing of the working wheels.

Version 3. Pumps with cast (trap) blade taps. The stages of the pumps are of a semi-axle type. The working wheels are fixed on the shaft.

Version 4. Mono-block electric pump units (the working wheel is located on the shaft of the electric motor).

They are used for the rise of pure water for urban, industrial and agricultural water supply from artesian wells.

Flow, m3/h	210
Head, m	25
Frequency, Hz	50
Frequency, rpm	3000
Power, kWt	22
Height of self-suction, m	_

Length, mm	Diametr max, mm	Weight, kG
1416	281	212

How To Find Us

Oryol:

47 Polesskaya St Oryol, Russia 302028

Phone: +7 (486 2) 43-73-22 Phone: +7 (486 2) 45-41-60 Fax: +7 (486 2) 45-86-56 E-mail: **rgm@rgm1.ru**

Moscow:

44 Bolshaya Academicheskaya St, apt. 115

Moscow, Russia

Phone/Fax: +7 (495) 153-20-05, 976-37-75

E-mail: m@rgm1.ru

St.Petersburg:

10 Sedova St, Floor 3 St.Petersburg, Russia

Phone/Fax: +7 (812) 265-15-02, 380-42-13

E-mail: spb@rgm1.ru

Voronezh:

54 Peshestreletskaya St Voronezh, Russia

Phone/Fax: +7 (473 2) 63-59-81, 39-30-17

E-mail: v@rgm1.ru

Omsk:

115 Pushkina St Omsk, Russia

Phone/Fax: +7 (381 2) 31-22-30 E-mail: **omsk@rgm1.ru**

Sophia:

96 Slatinska St, floor 5, office 21

Sophia, Bulgaria

Phone/Fax: (+3592) 971-56-70 Phone: (+3592) 971-56-71 E-mail: rgm1@homelan.bg